Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis.

نویسندگان

  • Opal S Chen
  • Shawn Hemenway
  • Jerry Kaplan
چکیده

Decreased expression of Yfh1p in the budding yeast, Saccharomyces cerevisiae, and the orthologous human gene frataxin results in respiratory deficiency and mitochondrial iron accumulation. The absence of Yfh1p decreases mitochondrial iron export. We demonstrate that decreased expression of Nfs1p, the yeast cysteine desulfurase that plays a central role in Fe-S cluster synthesis, also results in mitochondrial iron accumulation due to decreased export of mitochondrial iron. In the absence of Yfh1p, activity of Fe-S-containing enzymes (aconitase, succinate dehydrogenase) is decreased, whereas the activity of a non-Fe-S-containing enzyme (malate dehydrogenase) is unaffected. Aconitase protein was abundant even though the activity of aconitase was decreased in both aerobic and anaerobic conditions. These results demonstrate a direct role of Yfh1p in the formation of Fe-S clusters and indicate that mitochondrial iron export requires Fe-S cluster biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria.

Yeast Mrs3p and Mrs4p are evolutionarily conserved mitochondrial carrier proteins that transport iron into mitochondria under some conditions. Yeast frataxin (Yfh1p), the homolog of the human protein implicated in Friedreich ataxia, is involved in iron homeostasis. However, its precise functions are controversial. Anaerobically grown triple mutant cells (Deltamrs3/4/Deltayfh1) displayed a sever...

متن کامل

Erythropoiesis and Iron Sulfur Cluster Biogenesis

Erythropoiesis in animals is a synchronized process of erythroid cell differentiation that depends on successful acquisition of iron. Heme synthesis depends on iron through its dependence on iron sulfur (Fe-S) cluster biogenesis. Here, we review the relationship between Fe-S biogenesis and heme synthesis in erythropoiesis, with emphasis on the proteins, GLRX5, ABCB7, ISCA, and C1orf69. These Fe...

متن کامل

Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes.

Iron-sulfur (Fe/S) clusters are important cofactors of numerous proteins involved in electron transfer, metabolic and regulatory processes. In eukaryotic cells, known Fe/S proteins are located within mitochondria, the nucleus and the cytosol. Over the past years the molecular basis of Fe/S cluster synthesis and incorporation into apoproteins in a living cell has started to become elucidated. Bi...

متن کامل

The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins.

The mitochondrial matrix protein frataxin is depleted in patients with Friedreich's ataxia, the most common autosomal recessive ataxia. While frataxin is important for intracellular iron homeostasis, its exact cellular role is unknown. Deletion of the yeast frataxin homolog YFH1 yields mutants ((Delta)yfh1) that, depending on the genetic background, display various degrees of phenotypic defects...

متن کامل

The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins.

Iron-sulfur (Fe/S) cluster-containing proteins catalyse a number of electron transfer and metabolic reactions. Little is known about the biogenesis of Fe/S clusters in the eukaryotic cell. Here, we demonstrate that mitochondria perform an essential role in the synthesis of both intra- and extra-mitochondrial Fe/S proteins. Nfs1p represents the yeast orthologue of the bacterial cysteine desulfur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 19  شماره 

صفحات  -

تاریخ انتشار 2002